3.2460 \(\int \frac{(2+3 x)^2 \sqrt{3+5 x}}{\sqrt{1-2 x}} \, dx\)

Optimal. Leaf size=99 \[ -\frac{1}{10} \sqrt{1-2 x} (3 x+2) (5 x+3)^{3/2}-\frac{181}{400} \sqrt{1-2 x} (5 x+3)^{3/2}-\frac{6269 \sqrt{1-2 x} \sqrt{5 x+3}}{1600}+\frac{68959 \sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )}{1600 \sqrt{10}} \]

[Out]

(-6269*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/1600 - (181*Sqrt[1 - 2*x]*(3 + 5*x)^(3/2))/400 - (Sqrt[1 - 2*x]*(2 + 3*x)*
(3 + 5*x)^(3/2))/10 + (68959*ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]])/(1600*Sqrt[10])

________________________________________________________________________________________

Rubi [A]  time = 0.0236073, antiderivative size = 99, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.192, Rules used = {90, 80, 50, 54, 216} \[ -\frac{1}{10} \sqrt{1-2 x} (3 x+2) (5 x+3)^{3/2}-\frac{181}{400} \sqrt{1-2 x} (5 x+3)^{3/2}-\frac{6269 \sqrt{1-2 x} \sqrt{5 x+3}}{1600}+\frac{68959 \sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )}{1600 \sqrt{10}} \]

Antiderivative was successfully verified.

[In]

Int[((2 + 3*x)^2*Sqrt[3 + 5*x])/Sqrt[1 - 2*x],x]

[Out]

(-6269*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/1600 - (181*Sqrt[1 - 2*x]*(3 + 5*x)^(3/2))/400 - (Sqrt[1 - 2*x]*(2 + 3*x)*
(3 + 5*x)^(3/2))/10 + (68959*ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]])/(1600*Sqrt[10])

Rule 90

Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a + b*
x)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 3)), x] + Dist[1/(d*f*(n + p + 3)), Int[(c + d*x)^n*(e +
 f*x)^p*Simp[a^2*d*f*(n + p + 3) - b*(b*c*e + a*(d*e*(n + 1) + c*f*(p + 1))) + b*(a*d*f*(n + p + 4) - b*(d*e*(
n + 2) + c*f*(p + 2)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 3, 0]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 54

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[2/Sqrt[b], Subst[Int[1/Sqrt[b*c -
 a*d + d*x^2], x], x, Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d}, x] && GtQ[b*c - a*d, 0] && GtQ[b, 0]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{(2+3 x)^2 \sqrt{3+5 x}}{\sqrt{1-2 x}} \, dx &=-\frac{1}{10} \sqrt{1-2 x} (2+3 x) (3+5 x)^{3/2}-\frac{1}{30} \int \frac{\left (-174-\frac{543 x}{2}\right ) \sqrt{3+5 x}}{\sqrt{1-2 x}} \, dx\\ &=-\frac{181}{400} \sqrt{1-2 x} (3+5 x)^{3/2}-\frac{1}{10} \sqrt{1-2 x} (2+3 x) (3+5 x)^{3/2}+\frac{6269}{800} \int \frac{\sqrt{3+5 x}}{\sqrt{1-2 x}} \, dx\\ &=-\frac{6269 \sqrt{1-2 x} \sqrt{3+5 x}}{1600}-\frac{181}{400} \sqrt{1-2 x} (3+5 x)^{3/2}-\frac{1}{10} \sqrt{1-2 x} (2+3 x) (3+5 x)^{3/2}+\frac{68959 \int \frac{1}{\sqrt{1-2 x} \sqrt{3+5 x}} \, dx}{3200}\\ &=-\frac{6269 \sqrt{1-2 x} \sqrt{3+5 x}}{1600}-\frac{181}{400} \sqrt{1-2 x} (3+5 x)^{3/2}-\frac{1}{10} \sqrt{1-2 x} (2+3 x) (3+5 x)^{3/2}+\frac{68959 \operatorname{Subst}\left (\int \frac{1}{\sqrt{11-2 x^2}} \, dx,x,\sqrt{3+5 x}\right )}{1600 \sqrt{5}}\\ &=-\frac{6269 \sqrt{1-2 x} \sqrt{3+5 x}}{1600}-\frac{181}{400} \sqrt{1-2 x} (3+5 x)^{3/2}-\frac{1}{10} \sqrt{1-2 x} (2+3 x) (3+5 x)^{3/2}+\frac{68959 \sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{3+5 x}\right )}{1600 \sqrt{10}}\\ \end{align*}

Mathematica [A]  time = 0.0301972, size = 60, normalized size = 0.61 \[ \frac{-10 \sqrt{1-2 x} \sqrt{5 x+3} \left (2400 x^2+6660 x+9401\right )-68959 \sqrt{10} \sin ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right )}{16000} \]

Antiderivative was successfully verified.

[In]

Integrate[((2 + 3*x)^2*Sqrt[3 + 5*x])/Sqrt[1 - 2*x],x]

[Out]

(-10*Sqrt[1 - 2*x]*Sqrt[3 + 5*x]*(9401 + 6660*x + 2400*x^2) - 68959*Sqrt[10]*ArcSin[Sqrt[5/11]*Sqrt[1 - 2*x]])
/16000

________________________________________________________________________________________

Maple [A]  time = 0.009, size = 87, normalized size = 0.9 \begin{align*}{\frac{1}{32000}\sqrt{1-2\,x}\sqrt{3+5\,x} \left ( -48000\,{x}^{2}\sqrt{-10\,{x}^{2}-x+3}+68959\,\sqrt{10}\arcsin \left ({\frac{20\,x}{11}}+1/11 \right ) -133200\,x\sqrt{-10\,{x}^{2}-x+3}-188020\,\sqrt{-10\,{x}^{2}-x+3} \right ){\frac{1}{\sqrt{-10\,{x}^{2}-x+3}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2+3*x)^2*(3+5*x)^(1/2)/(1-2*x)^(1/2),x)

[Out]

1/32000*(3+5*x)^(1/2)*(1-2*x)^(1/2)*(-48000*x^2*(-10*x^2-x+3)^(1/2)+68959*10^(1/2)*arcsin(20/11*x+1/11)-133200
*x*(-10*x^2-x+3)^(1/2)-188020*(-10*x^2-x+3)^(1/2))/(-10*x^2-x+3)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 4.22554, size = 78, normalized size = 0.79 \begin{align*} \frac{68959}{32000} \, \sqrt{5} \sqrt{2} \arcsin \left (\frac{20}{11} \, x + \frac{1}{11}\right ) + \frac{3}{20} \,{\left (-10 \, x^{2} - x + 3\right )}^{\frac{3}{2}} - \frac{321}{80} \, \sqrt{-10 \, x^{2} - x + 3} x - \frac{10121}{1600} \, \sqrt{-10 \, x^{2} - x + 3} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^2*(3+5*x)^(1/2)/(1-2*x)^(1/2),x, algorithm="maxima")

[Out]

68959/32000*sqrt(5)*sqrt(2)*arcsin(20/11*x + 1/11) + 3/20*(-10*x^2 - x + 3)^(3/2) - 321/80*sqrt(-10*x^2 - x +
3)*x - 10121/1600*sqrt(-10*x^2 - x + 3)

________________________________________________________________________________________

Fricas [A]  time = 1.79808, size = 225, normalized size = 2.27 \begin{align*} -\frac{1}{1600} \,{\left (2400 \, x^{2} + 6660 \, x + 9401\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1} - \frac{68959}{32000} \, \sqrt{10} \arctan \left (\frac{\sqrt{10}{\left (20 \, x + 1\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{20 \,{\left (10 \, x^{2} + x - 3\right )}}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^2*(3+5*x)^(1/2)/(1-2*x)^(1/2),x, algorithm="fricas")

[Out]

-1/1600*(2400*x^2 + 6660*x + 9401)*sqrt(5*x + 3)*sqrt(-2*x + 1) - 68959/32000*sqrt(10)*arctan(1/20*sqrt(10)*(2
0*x + 1)*sqrt(5*x + 3)*sqrt(-2*x + 1)/(10*x^2 + x - 3))

________________________________________________________________________________________

Sympy [A]  time = 14.9652, size = 292, normalized size = 2.95 \begin{align*} \frac{2 \sqrt{5} \left (\begin{cases} \frac{11 \sqrt{2} \left (- \frac{\sqrt{2} \sqrt{5 - 10 x} \sqrt{5 x + 3}}{22} + \frac{\operatorname{asin}{\left (\frac{\sqrt{22} \sqrt{5 x + 3}}{11} \right )}}{2}\right )}{4} & \text{for}\: x \geq - \frac{3}{5} \wedge x < \frac{1}{2} \end{cases}\right )}{125} + \frac{12 \sqrt{5} \left (\begin{cases} \frac{121 \sqrt{2} \left (\frac{\sqrt{2} \sqrt{5 - 10 x} \left (- 20 x - 1\right ) \sqrt{5 x + 3}}{968} - \frac{\sqrt{2} \sqrt{5 - 10 x} \sqrt{5 x + 3}}{22} + \frac{3 \operatorname{asin}{\left (\frac{\sqrt{22} \sqrt{5 x + 3}}{11} \right )}}{8}\right )}{8} & \text{for}\: x \geq - \frac{3}{5} \wedge x < \frac{1}{2} \end{cases}\right )}{125} + \frac{18 \sqrt{5} \left (\begin{cases} \frac{1331 \sqrt{2} \left (\frac{\sqrt{2} \left (5 - 10 x\right )^{\frac{3}{2}} \left (5 x + 3\right )^{\frac{3}{2}}}{3993} + \frac{3 \sqrt{2} \sqrt{5 - 10 x} \left (- 20 x - 1\right ) \sqrt{5 x + 3}}{1936} - \frac{\sqrt{2} \sqrt{5 - 10 x} \sqrt{5 x + 3}}{22} + \frac{5 \operatorname{asin}{\left (\frac{\sqrt{22} \sqrt{5 x + 3}}{11} \right )}}{16}\right )}{16} & \text{for}\: x \geq - \frac{3}{5} \wedge x < \frac{1}{2} \end{cases}\right )}{125} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)**2*(3+5*x)**(1/2)/(1-2*x)**(1/2),x)

[Out]

2*sqrt(5)*Piecewise((11*sqrt(2)*(-sqrt(2)*sqrt(5 - 10*x)*sqrt(5*x + 3)/22 + asin(sqrt(22)*sqrt(5*x + 3)/11)/2)
/4, (x >= -3/5) & (x < 1/2)))/125 + 12*sqrt(5)*Piecewise((121*sqrt(2)*(sqrt(2)*sqrt(5 - 10*x)*(-20*x - 1)*sqrt
(5*x + 3)/968 - sqrt(2)*sqrt(5 - 10*x)*sqrt(5*x + 3)/22 + 3*asin(sqrt(22)*sqrt(5*x + 3)/11)/8)/8, (x >= -3/5)
& (x < 1/2)))/125 + 18*sqrt(5)*Piecewise((1331*sqrt(2)*(sqrt(2)*(5 - 10*x)**(3/2)*(5*x + 3)**(3/2)/3993 + 3*sq
rt(2)*sqrt(5 - 10*x)*(-20*x - 1)*sqrt(5*x + 3)/1936 - sqrt(2)*sqrt(5 - 10*x)*sqrt(5*x + 3)/22 + 5*asin(sqrt(22
)*sqrt(5*x + 3)/11)/16)/16, (x >= -3/5) & (x < 1/2)))/125

________________________________________________________________________________________

Giac [A]  time = 2.73681, size = 73, normalized size = 0.74 \begin{align*} -\frac{1}{16000} \, \sqrt{5}{\left (2 \,{\left (12 \,{\left (40 \, x + 87\right )}{\left (5 \, x + 3\right )} + 6269\right )} \sqrt{5 \, x + 3} \sqrt{-10 \, x + 5} - 68959 \, \sqrt{2} \arcsin \left (\frac{1}{11} \, \sqrt{22} \sqrt{5 \, x + 3}\right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^2*(3+5*x)^(1/2)/(1-2*x)^(1/2),x, algorithm="giac")

[Out]

-1/16000*sqrt(5)*(2*(12*(40*x + 87)*(5*x + 3) + 6269)*sqrt(5*x + 3)*sqrt(-10*x + 5) - 68959*sqrt(2)*arcsin(1/1
1*sqrt(22)*sqrt(5*x + 3)))